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Nonlinear Dimensionality Reduction Applied to 
the Classification of Images 

Abstract: 
For this project I plan to implement a dimension reduction algorithm 
entitled “Locally Linear Embeddings” in the programming language 
MatLab. For a group of images, the dimension reduction algorithm is 
applied, and the results are used to compare classification 
accuracies. 



0. Introduction 
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1. Introduction (cont.) 

•We start with multiple high-dimensional points 
(maybe a set of images) 
 

•We map that image to a D dimensional vector 
 

•Lots of elements means the processing of this 
data is more computationally intensive 
 

•Usually lots of redundant data, or lots of 
correlation in the elements 

•We want a vector of a reduced size that retains 
important characteristics of the data 
 

•We also want the new vector’s elements to be un-
correlated 
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2. Introduction (cont.) 

X 
There are a number of techniques to 
perform this operation under the field 
Dimension Reduction 

•Search for a matrix A (or matrix 
operation) that maps your high-
dimensional data into a lower 
dimensional space 
 

•Preserves key characteristics of data 

•Use a nonlinear mapping that reduces 
your dimension 
 

•Preserves key characteristics of data 
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3. Approach 
Locally Linear Embeddings (LLE) 

•Nonlinear dimension reduction method 
 

•Developed by Dr. Sam Roweis and Dr. 
Lawrence Saul 
 

•Takes a high-dimensional set of points X 
and maps them to a lower dimensional 
set of points Y 
 

•Preserves local geometry (local 
distances between points) 
 

•This is done by solving a series (two) 
constrained optimization problems 

Figure 1: Obtained from LLE website [1] 

[1] http://www.cs.nyu.edu/~roweis/lle/algorithm.html 

http://www.cs.nyu.edu/~roweis/lle/algorithm.html


4. Approach (cont.) 
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•Find the k nearest neighbors of each point in 
our set 
 

•Try to find a linear (almost convex) combination 
of the nearest neighbors that best represents 
the point 
 

•Use the found weights as the contribution of 
each neighbor point 

0=ijW

Constraints 

Optimization Problem 

Step 1 

•First constraint  makes the embedding invariant 
to data scaling and translations 
 

•Second constraint ensures that the weight of 
non-neighbors is zero 



5. Approach (cont.) 
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•Find the reduced dimension points that retain 
the weight spacing determined in Step 1 
 

•In essence, we are preserving pair wise 
distances between our k neighbors 
 

•Use the found weights as the contribution of 
each neighbor point 
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Constraints 

Optimization Problem 

Step 2 

•First constraint centers the points around the 
origin 
 

•Second constraint ensures the outer products 
sum to the identity matrix 



6. Implementation 

Minimizing E(W) 

0=ijW

• We make a set                 which contains the 
closest k neighbors      of point 
 

• We then compute the neighborhood 
correlation matrix C 
 

• The elements        are the pairwise inner 
products of the nearest neighbors 
 

• From this correlation matrix, we compute the 
inverse  
 

• This is done for each point in the dataset 

Now we can construct our weights       with the following formula 

Here,     is the Lagrange multiplier as specified in the paper by Saul and Roweis [1] 

[1] Sam Roweis and Lawrence Saul, Nonlinear Dimensionality Reduction by Locally Linear Embeddings, Science v.290 no.5500, Dec.22, 
2000. pp.2323--2326. 
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7. Implementation (cont.) 

Minimizing e(Y) 
• It has been proven that minimizing this 

function is equivalent to performing an eigen-
decomposition [1] 
 

• We find the eigenvalues and eigenvectors of 
 
 

• Taking the eigenvectors that correspond to 
the smallest eigenvalues, we now have Y 
 

• The rows of the eigenvector matrix are the 
reduced dimension dataset Y 

[1] Sam Roweis and Lawrence Saul, Nonlinear Dimensionality Reduction by Locally Linear Embeddings, Science v.290 no.5500, Dec.22, 
2000. pp.2323--2326. 
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8. Implementation (cont.) 
Computational Costs 

Minimizing E(W) is of complexity 
 
 
N – size of data set (number of vectors) 
k – number of nearest neighbors used 

Minimizing e(Y) can be solved with sub-
quadratic complexity due to the Sparsity of 
the weight vector 

][ 3NkO



9. Implementation (cont.) 

Algorithm Extension 1 

Algorithm Extension 2 

There are two parameters with LLE, k and d 
 
In a paper by Kouropteva, Okun, and Pietikainen, a method is presented for 
determining the optimal number of nearest neighbors [1] 

In another paper by Kouropteva, Okun, and Pietikainen, an incremental LLE 
implementation is described [2] 
 
The advantage here is that we must solve smaller optimization problems 

[1] Olga Kouropteva and Oleg Okun and Matti Pietikäinen, Selection of the Optimal Parameter Value for the Locally Linear Embedding 
Algorithm, 1 st International Conference on Fuzzy Systems, 2002, 359--363.  

[2] O. Kouropteva and M. Pietikainen. Incremental locally linear embedding. Pattern Recognition, 38:1764–1767, 2005. 



10. Implementation (cont.) 

Software 
Algorithms implemented in the 
programming language MatLab 
 
This is due to: 

• Flexibility in syntax 
 

• Ubiquitous use by the scientific 
community 
 

• Wide availability of support 

Hardware 
Currently plan to use personal computer 
for development and testing 
 
If this becomes computationally infeasible, 
I will also use the computers in the 
Norbert Weiner Center for testing 



11. Validation 

Standard Topological Manifolds (Surfaces) 

Twin Peaks Function 
Swiss Roll Mapping 

Logistic Function Gaussian Function 



11. Validation (cont.) 

MatLab Dimension Reduction Toolbox 
•The Dimension Reduction Toolbox is implemented in MatLab 
 

•It is free to use and open to the public 
 

•It contains a wide range of Dimension reduction methods 
 

•This includes an implementation of LLE 
 

•Using the test functions from the previous slide we can compare the 
output to ensure a correct implementation of our LLE algorithm 

Available at: http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html  

http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html


13. Testing 

Our specific application is in image classification 
 
We want to find a hyper plane that separates different 
images 
 
This can be done using Support Vector Machines, which 
finds the optimal hyper plane that separates the data 
 
w is the vector normal to the hyper plane and      is the 
offset from the origin 
 
We can find this by solving a constrained optimization 
problem, or a similar Lagrangian unconstrained problem 
 
Here,     are our data points and                   are the class 
labels (which group an image belongs to) 
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14. Databases 

The Yale Face Database B [1] 
 
•Over 5000 face images 
 

•10 different subjects (people) 
 

•Over 500 different positions and 
illuminations 
 

•Using the original dataset (images) and the 
reduced dataset (LLE), I plan to compare 
the classification accuracy of the SVM on 
these sets 

[1] http://www.csie.ntu.edu.tw/ cjlin/libsvm/faq.html#f203 



15. Project Schedule 
September 2012 - November 2012 
•Plan and implement the LLE algorithm in MatLab, 
efficiently handling storage and memory management 
issues. 
 

•Perform unit tests to correct any bugs present in code. 
 

•Validate code on standard topological structures (Swiss 
Roll, etc.). 
 

•Compare results of algorithm output to the results of 
the LLE method present in the Dimension Reduction 
Toolbox. 
 

•Test the LLE algorithm on a dataset from a publicly 
available database. 
 
November 2012 - December 2012 
•Make any necessary preprocessing changes to the image 
database used. 
 

•Prepare the mid-year (end of semester) report and 
presentation. 
 

•Deliver mid-year report. 

January 2013 
•Implement a pre-developed SVM package for MatLab. 
 

•Test classification accuracy of SVM on dimension-
reduced dataset. 
 

•Assess effectiveness. 
 
February 2013 - April 2013 
•Implement SVM in MatLab (time permitting). 
 

•Implement LLE extensions. 
 

•Compare results of original LLE implementation to 
extended versions. 
 
April 2013 - May 2013 
•Prepare final presentation and report. 
 

•Make any last minute adjustments to code that are 
required. 
 

•Package deliverables. 
 

•Ensure the safe delivery of source code and other 
project materials. 



16. Deliverables 

•Implemented LLE MatLab code 
 

•Testing scripts 
 

•Documentation regarding code use and available options 
 

• Final report of algorithm design, testing, and results 
 

•Final presentation 
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18. Questions 

QUESTIONS 


	Nonlinear Dimensionality Reduction Applied to the Classification of Images
	0. Introduction
	1. Introduction (cont.)
	2. Introduction (cont.)
	3. Approach
	4. Approach (cont.)
	5. Approach (cont.)
	6. Implementation
	7. Implementation (cont.)
	8. Implementation (cont.)
	9. Implementation (cont.)
	10. Implementation (cont.)
	11. Validation
	11. Validation (cont.)
	13. Testing
	14. Databases
	15. Project Schedule
	16. Deliverables
	17. References
	18. Questions

